



# Planetary Instrument Definition & Development Program (PIDDP)

Presented to PSD Technology Panel

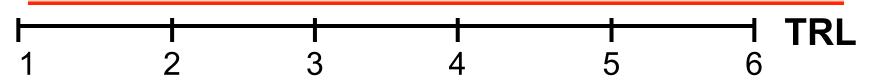
January 27, 2010

Planetary Science Division SMD / NASA HQ

Janice L. Buckner Program Officer



#### **PIDDP Objectives**




- Long-running program supports definition and development of innovative instruments for future missions in Discovery, New Frontiers, Mars Exploration Program, Lunar Initiative and Planetary Flagship missions.
- Traditionally, TRL 1-4 (up to breadboard), recently expanded to TRL 6.
- Instrument technologies include: measuring atmospheric, surface, and subsurface composition, particles and fields, and physical properties of bodies in the solar system.
- Also, support sample collection and sample handling, drills, etc. for mass spectrometers, gas chromatographs, & evolved gas analyzers.



## Instrument Development Programs in Planetary Science Division







Planetary Instrument Development

#### **MIDP**

Mars Instrument Development

**MISSIONS** 

#### **ASTID**

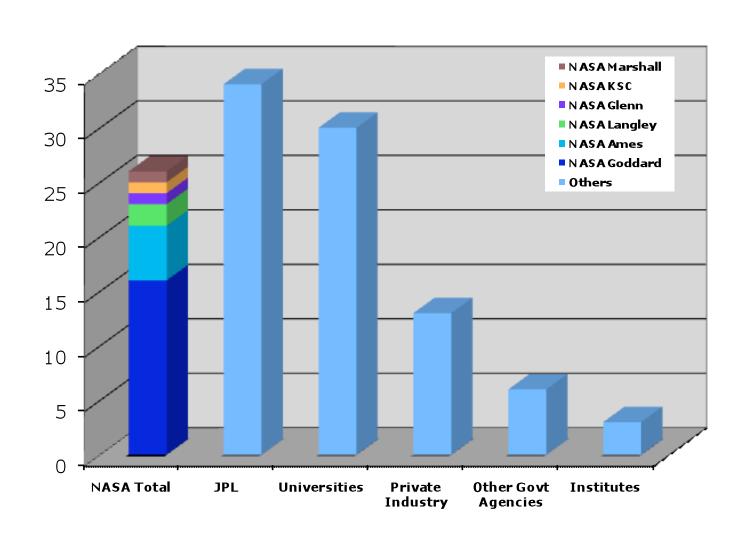
Astrobiology Instrument
Development & Mission Concepts

#### **ASTEP**

Astrobiology Science & Technology



#### **PIDDP Resource Summary**




| Year | Number<br>Proposals | Number<br>Selected | Annual<br>Budget | \$Average/<br>Proposal | Selection<br>Rate |
|------|---------------------|--------------------|------------------|------------------------|-------------------|
| FY04 | 50                  | 15                 | 7.5M             | 190K                   | 30%               |
| FY05 | 66                  | 12                 | 7.6M             | 230K                   | 20%               |
| FY06 | 100                 | 10                 | 7.7M             | 260K                   | 10%               |
| FY07 | 107                 | 18                 | 6.8M             | 233K                   | 17%               |
| FY08 | 115                 | 16                 | 10.2M            | 240K                   | 14%               |
| FY09 | 110                 | TBD                | 8.5M             | 240K                   | TBD               |



### PIDDP07 Proposals - Breakdown by Institution









#### **Decision-Making Processes Used**

- An <u>annual</u> PIDDP call for proposals is released in the Research Opportunities in Space and Earth Science (ROSES)
- Proposals are submitted to NSPIRES by the proposal due date
- All proposals are technically reviewed by the Planetary Science community (i.e.: NASA, Industry, Academia, Other Gov)
- Proposals undergo a full Peer Panel Review evaluation where they are ranked as Must Fund, Fund If and Do Not Fund.
- The PIDDP Program Officer prepares and presents the Panel Review results to the PSD Selection Official and recommends proposals for selection. (i.e.: Source Selection Document)
- The Selection Official makes final selection decisions
- Selection Announcements
- Awards (most PIDDP awards are grants)



#### What Is and Is Not Working and Why



- What is working?
  - Resiliency of the planetary science community
- What is not working?
  - Increased proposal load & reduced funding > lower success rate
  - Proposal review timeliness—too much time between proposal submittals
     & selections
  - Program Officer has limited communication with Principal Investigators and Science Community
- Suggestions for improvement
  - Increased budget to compensate for influx of TRL 4-6 proposals
  - Reduce time between submitted and selected proposals
  - More frequent/open communication with Principal Investigators
    - Site visits, workshops, program reviews
  - More involvement with both Program Scientists and community
    - Better understanding of science needs for future PIDDP solicitations
    - Opportunities to infuse PIDDP technologies into missions



#### Missions Enabled by PIDDP Technologies



#### Missions that are currently benefitting from PIDDP technologies

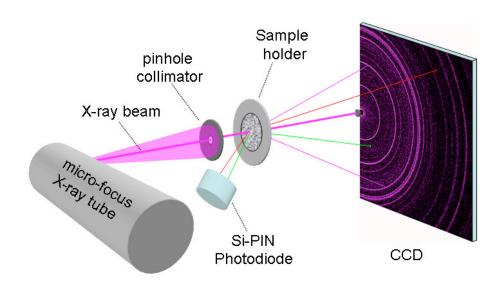
- Cassini (launched 10/97, currently providing data)
  - Magnetospheric Imaging Instrument (MIMI)
- MESSENGER (launched 8/3/04, currently providing data)
  - Mercury Dual Imaging System (MDIS)
  - Magnetometer (MAG)
  - Gamma-Ray and Neutron Spectrometer (GNRS)
  - X-Ray Spectrometer (XRS)
- Lunar Reconnaissance Orbiter (launched 6/18/09, currently providing data)
  - Miniature Radio Frequency (Mini-RF)
- New Horizons (launched 1/06, expected to reach Pluto by 2015)
  - Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI)
- Mars Science Laboratory (launch delayed to 2011)
  - Chemistry & Micro-Imaging (ChemCam)
  - Chemistry & Mineralogy (CheMin)
  - Sample & Analysis at Mars (SAM)

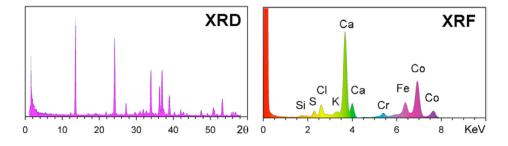


#### **Example of PIDDP Lifecycle**



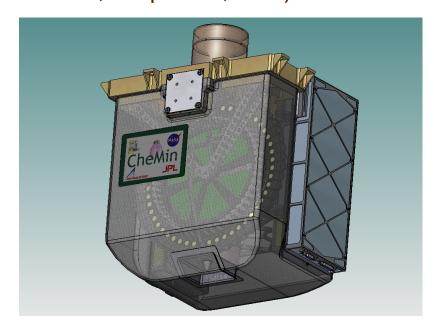
- Many Instruments on MSL have PIDDP heritage
  - ChemCam, CheMin, SAM, cameras
- CheMin XRF/XRD lifecycle:
  - PIDDP 1994 and 1997
  - ASTID 2000
  - MIDP 2002
  - MSL selection 2004




#### **Chemistry & Mineralogy (CheMin)**




## Principal Investigator: David Blake NASA Ames Research Center

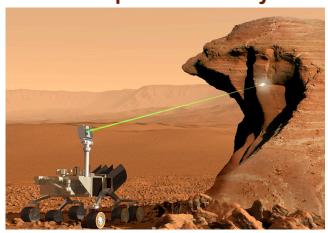


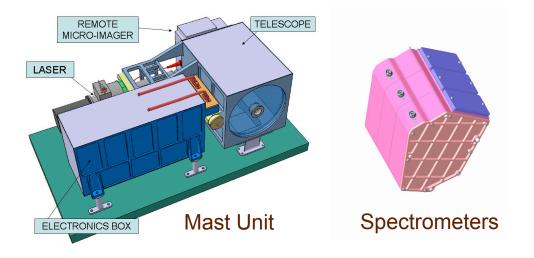


## CheMin performs quantitative mineralogy and elemental composition

- X-ray diffraction & X-ray fluorescence (XRD/XRF); standard techniques for laboratory analysis
- Identification and quantification of minerals in geologic materials (e.g., basalts, evaporites, soils)







#### **Chemistry & Micro-Imaging (ChemCam)**



#### **Principal Investigator: Roger Wiens**

### Los Alamos National Laboratory Centre d'Etude Spatiale des Rayonnements

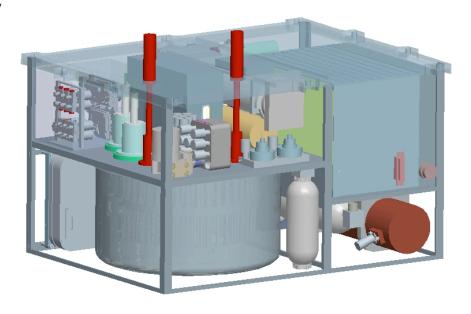




## ChemCam performs elemental analyses through laser-induced breakdown spectroscopy

- Rapid characterization of rocks and soils from a distance of up to 9 meters
- 240-800 nm spectral range
- Dust removal over a ~1-cm region;
   depth profiling within a ~1-mm spot
- Helps classify hydrated minerals, ices, organic molecules, and weathering rinds
- High-resolution context imaging (resolves 0.8 mm at 10 m)




#### Sample Analysis at Mars (SAM)



## Principal Investigator: Paul Mahaffy NASA Goddard Space Flight Center

# SAM Suite Instruments Quadrupole Mass Spectrometer (QMS) Gas Chromatograph (GC) Tunable Laser Spectrometer (TLS)

- Search for organic compounds of biotic and prebiotic relevance, including methane, and explore sources and destruction paths for carbon compounds
- Reveal chemical state of other light elements that are important for life as we know it on Earth
- Study the habitability of Mars by measuring oxidants such as hydrogen peroxide
- Investigate atmospheric and climate evolution through isotope measurements of noble gases and light elements



- QMS: molecular and isotopic composition in the 2-535 Dalton mass range for atmospheric and evolved gas samples
- GC: resolves complex mixtures of organics into separate components
- TLS: abundance and precision (3-50 per mil) isotopic composition of CH<sub>4</sub>, H<sub>2</sub>O, CO<sub>2</sub>, N<sub>2</sub>O, and H<sub>2</sub>O<sub>2</sub>





#### **Future Plans**

- PIDDP-09 Selection Announcement and Awards
- New PIDDP Call in ROSES-2010